MAX1000
Nios Il Soft Core Lab

Please read the legal disclaimer at the end of this document.

Revision 1.0

NARNOW

Contents
Lo INEFOAUCTION ettt et e et e st e s a bt e st e e e s beeebbeesabeeesabeeeanseesaseeesaneennns 3
D C =1 a1 oY= - [o =Tc [R PUPPRROt 4
3. EXamine the SYSTEM DESISN ...cecciiiiii ittt e et e e e et e e s e satee e e s sabee e e s eatee e e ennbaeeeesnseeeanan 5
I 1 To T | Yo i A 0 o S 6
5. Examine the MAX1000 Development Platformcccccvieeieciiii et 7
6. Implementing Nios Il soft core in MAX1000ccceeveiiiiieeeeiiieeeesiieeeesreee e e esrreeeeesnreeeeesseeeeeas 7
6.1 Create a New Quartus Prime Project ..., 8
6.2 Build the Hardware DESISNcc.ueeiieciiee ettt ccee e st e e eettre e s saaee e e e sbae e e s snraeeeennes 10
6.3 BuUild the SOftWare DESIZN ...cccccvvieiicciiee et re e e raree e e et e e e e eree e e ennes 44
T RBVISIONS ..ttt e e e e e e e s e e e e e e s e rr e e e e e e e e e rrreeeeeeeeeaan 53
T Y- | B B [l = [y o V=1 oSSR 54
MAX1000 Page |2 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

1. Introduction

This tutorial provides comprehensive information to help you understand how to create a
software project for a Nios Il processor system in an Intel FPGA and run the software project on
your MAX1000 board. The Nios Il processor core is a soft intellectual property (IP) processor that
you download (along with other hardware components that comprise the Nios Il system) onto an
Intel FPGA. This tutorial introduces you to the basic software development flow for the Nios Il
processor.

Lab Overview: This lab teaches you how to create an embedded system implemented in
programmable logic. You will build a processor-based hardware system
and run software on it. As the lab progresses, you will see how quick and
easy it is to build entire systems using Quartus Qsys tools to configure and
integrate pre-verified IP blocks.

Project Details: The lab will guide you through creating an embedded system using Qsys.
This system will be able to retrieve data from the on-board accelerometer
of the MAX1000. Depending on the data received by the Nios Il processor,
the LEDs will react to the Y-axis.

Lab Notes: Many of the names that the lab asks you to choose for files, components,
and other objects in this exercise must be spelled exactly as directed. This
nomenclature is necessary because the pre-written software application
includes variables that use the names of the hardware peripherals.
Naming the components differently can cause the software application to
fail. There are also other similar dependencies within the project that
require you to enter the correct names.

MAX1000 Page |3 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

2. Getting Started

The first objective is to ensure that you have all the necessary hardware items and software
installed so that the lab can be completed successfully. Below is a list of items required to
complete this lab:

MAX1000 Board
USB Cable
Lab Files: https://wiki.trenz-electronic.de/display/PD/MAX1000
o max1000_nios_template: Template files required to complete the project.
Includes: nios_lab_top.vhd, nios_lab_top.qsf, nios_lab_top.sdc, RESET_GEN.vhd
o max1000_nios_completed: Completed archived project with the Software files
for Nios Il Eclipse IDE.
Quartus Prime 17.0 Lite was used for this lab. Previous versions should work (If no Quartus
Prime is installed, refer to MAX1000 User Guide for instructions)
Installed Arrow USB Drivers (If not, refer to MAX1000 User Guide for instructions)
Personal computer or laptop running 64-bit Linux / Windows 7 or later with at least an
Intel i3 core (or equivalent), 4GB RAM and 12 GB of free hard disk space
A desire to learn!

MAX1000 Page |4 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

3. Examine the System Design

Overview: In this section, you will examine the design flow used in modern Intel FPGA designs.

Examine the Design Tool Flow

Developing software for an embedded system on a programmable chip requires an understanding
of the design flow between the Qsys system integration tool and the Nios Il Embedded
Development Suite (EDS). Typically, designs begin with requirements and become inputs to
system definitions. System definition is the first step in the design flow process. For this workshop,
the design will be built and then the FPGA image will be downloaded into the board. The objective
of the module is to review the development tools that will be used.

Nios 11 Cores
and Standard
Components

W e

(ustom
Instruction
and
Peripheral

Hardware Flow: Software Flow:

Integrate and compile Develop and build Nios 1|~ |4
(Quartus Prime parject software

Software Flow: Test and
Debug Mios Il software

The above diagram shows the typical design flow for the system design. The system definition is
done with Qsys. The Nios Il IDE uses the system description to create a new project for the
software application. The output of the FPGA design is a FPGA image that is used to configure the
FPGA. The output of the software flow is an executable which runs on the Nios Il processor.

MAX1000 Page |5 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

4. Nios Il Soft Core

The Nios Il processor delivers unprecedented flexibility for your cost-sensitive, real-time, safety-
critical, ASIC-optimized, and applications processing needs. The Nios Il processor supports all
Intel” FPGA and SoC families.

Two different versions available:

= NIOSII/f : License Fee, optimized for performance
= NIOS I/ e: Royalty Free, optimized for low resource consumption

There is a variety configuration options to choose from depending on the application’s needs.

|

CUSTOM
TCM TcMm
D g B VT=IY) INSTR IF D-MEM =P

[
Al |5 qﬂios'"ﬁ DF iy

EXP
MM MPU CNTRL

Debug

JTAG HW 18D TRCE
4= epUc BP TRCE PORT =

Nios Il soft core supports a variety of ecosystems, with more information found at:
https://www.altera.com/products/processors/ecosystem.html

MAX1000 Page |6

Nios Il Soft Core Lab

ARGV

WWWw.arrow.com
August 2017

NAROW

5. Examine the MAX1000 Development Platform

There are plenty of components on the MAX1000 board that can be used including the LEDs, push
buttons, accelerometer, external flash/SDRAM, and headers for connecting various other
components through PMOD and Arduino MKR connections.

® 0000000000000 @
® al 3 mmra*n-lr @ @B

[
"~
&

"=

"

¢

R
=
D
>
—
(®)
o
] O

®)

I\,I'\RE\N CX IO

HeOPPPPRPeOEEE@EEOEO

The completed system from completing the lab, will include many components including the Nios
Il soft processor, JTAG/UART, on-chip memory, PLL, and a SPI interface. The system that will be
created in Qsys will use a library of re-usable IP blocks. Interconnect between components is
automatically done by Qsys. The system interconnect manages the dynamics bus-width matching,
interrupt priorities, arbitration and address mapping. The processor that is used, Nios I, is a full
featured processor that can even run operating systems such as Linux and etc. The following
sections of this document will guide you through the process of building a basic embedded
system.

6. Implementing Nios Il soft core in MAX1000

MAX1000 Page |7 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

In this module, you will create a Quartus Prime project for your embedded system design and

create the software project to run on the Nios Il processor.

We will be using Qsys to add and interconnect different components. The following components

will be included in our system:

- Clock source

- PLL

- Nios Il Processor

- On-Chip Memory

- Parallel I/O (LED output)

- Parallel I/O (Accelerometer interrupt input)
- SPI (3-Wire Serial)

- System ID Peripheral

The complete system would look like this:

cLKizm I: RESET_GEN:u1
nios_sys:uo
clk_in ‘
RESET n D reset_n_1 reset_out_n clk_clk pio_leds export[7.0] D LED[7.0]
SEN |N'F1 reset_n_2 pio_lis3dh_export[1..0] pll_locked_conduit_export
SEN_lNTZ 4 I reset_reset_n spi_lis3dh_MOSI SEN SDI
SEN_SDO B spi_lis3dh_MISO spi_lis3dh_SCLK ED> SEN_SPC
- spi_lis3dh SS n > SEN_CS
6.1 Create a New Quartus Prime Project
MAX1000 Page |8 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.1.1 Create a new project using the New Project Wizard. Click File > New Project Wizard.

6.1.2 Configure the New Project Wizard directory, name and top-level entity information:
- Specify the location of the lab files on your PC.
In this case, it was: C:\FPGA_Projects\MAX1000\MAX1000_nios_lab
- Specify the name of the project: max1000_nios_lab
- Specify the name of the top-level entity: nios_lab_top

Note: It is a common naming convention to include the word “top” in the top-level design
entity to make it clear and obvious which entity is at the top of the hierarchy.

G New Project Wizard

Directory, Name, Top-Level Entity

What is the working directory for this project?

‘C:\FPGAiProiects\MAX'! 000\MAX1000_nios_lab

What is the name of this project?

‘max'] 000_nios_lab

What is the name of the top-level design entity for this projec
match the entity name in the design file.

‘niosilab)op‘

Use Existing Project Settings...

6.1.3 Click Next.
6.1.4 On the Project Type page, select “Empty Project” and click Next.

6.1.5 Add source files to the project
Clickonthe || button and browse into the lab files folder where you will locate the
three provided design files: nios_lab_top.vhdl, nios_lab_top.sdc and RESET_GEN.vhdl.
Select all of them and add them to the project directory.
Note: To see the sdc file, change file type filter to “All Files” (*.*).

Do not forget to click the Add button to add the files to the project directory.

(O New Project Wizard X

Add Files

Select the design files you want to include in the project. Click Add Al to add all design files in the project
directory to the project.

Note: you can always add design files to the project later.

File name: | J=] [Ada

‘ . x | Add All

File Name Type Library Remove
Inios_lab_topvhd | VHDL File
RESET_GEN.vhd VHDL File P
nios_lab_top.sdc Synopsys Design Constraints File S

Properties
< >

Specify the path names of any non-default libraries. User Libraries...

6.1.6 Click Next.
MAX1000 Page |9 wWww.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.1.7 Specify Family and Device Settings

Rather than using the pull down menus to select the correct family, enter the part number in the
Name Filter text box.

The part number is 10M08SAU169C8G.

G New Project Wizard

Family, Device & Board Settings

Device Board

Select the family and device you want to target for compilation.
‘You can install additional device support with the Install Devices command on the Tools menu.

To determine the version of the Quartus Prime software in which your target device is supported, refer to the Device Support List webpage.

Device famil Show in 'Available devices' list
Family: | MAX 10 (DA/DF/DC/SA/SC) i Package: UFBGA =
Device: [~!| | pin count: 169 ~
Target device Core speed grade: 8 i
Auto device selected by the Fitte; Name filter: 10m08sau’169c8g

® specific device selected in ‘Available devices' list Rowndrcdbies
Other: n/a

Available devices:

Name Core Voltage LES Total I/Os GPIOS Memory Bits Embedded multiplier 9-bit elements
10MO8SAU169C8G 3.3V 8064 130 130 387072 48 |
10M0O8SAU169CBGES 3.3V 8064 130 130 387072 18

Ber Finish @z Help

6.1.8 After making your selection, look at the kit and confirm that the part number marked on
your device matches your selection. Click Finish.

6.2 Build the Hardware Design

MAX1000 Page |10 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

Overview: In this module, you will use Qsys system integration tool to design your hardware
system. You will add standard and custom components, make interface
connections, assign clocks, set arbitrary levels of interrupts, and generate HDL for
the system.

6.2.1 Launch Qsys

Qsys is a high level system integration tool that allows you to quickly build a system using Altera’s
IP blocks as well as custom components. The tool automatically creates interconnect logic
between the components and allows for easy design use.

A Qsys is made up of several components and the automatically generated, high performance
interconnect between them. Qsys allows you to connect components on an interface level, rather
by signal by signal level. Qsys understands the different types of interfaces and will only allow
connections between interfaces of same type (i.e. a data master connects to a data slave, clock
source to clock sink, etc...).

6.2.1.1 Open Qsys: from the Quartus Prime window: Tools = Qsys.

6.2.1.2 In the new Qsys window, you should see a single Clock source component named clk_0in
the System Components Tab. This tab shows all the components currently in your system.

#& Qsys - unsaved.gsys* (C\FPGA_Projects\MAX1000\MAX1000_nios_lab\unsaved.qsys) = O x
File Edit System Generate View Tools Help
“ P Catalog & _ of || £ System Contents ¢ | AddressMap £ | Interconnect Requirements &2 = = =]
x| B ¥ system: unsaved
Project + Use Con... HName Description Export Clock Base
= New Component... ol B dk_0 Clock Source
le'éaaz‘vc B % dk_in Clock Input clk exported
e =] clk_in_reset Reset Input reset
4} Interface Protocols 2 € e i
F-Low Power | clk_reset Reset Qutput
-Memory Interfaces and Controllg
“-Processors and Peripherals
}-Qsys Interconnect
#H-University Program
< >
New... | | Edit Add
¥ Hiet & | Device & - m
[Elansaved tansaved asvs<) I
= clk
i m= reset
FE- 4 clk_0
< >
o At ¥ W current filter:
4= Messages ?3‘ o [=f =)
Type Path Message
0 Errors, 0 Warnings Generate HDL... | | Finish
6.2.2 Configure the Clock
MAX1000 Page |11 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

In this section, you will configure the clock input to your Qsys system. This clock will be fed to a
PLL to provide addition frequencies.

6.2.2.1 Double-click on the Clock Source component named clk_0. This will open the Parameter
editor window on the right side, which should look very familiar to the traditional
Megawizard windows.

6.2.2.2 Change the clock frequency parameter to 12MHz (12000000 Hz).

Ensure that the “Clock frequency is known” parameter is enabled.

— i
1 system Contents 231 Address Map 2@‘ Interconnect Requirements 23| - = o|| = Parameters t{‘

System: unsaved Path: clk_0
Clock Source

clock_source

= (=[]

« W system: unsaved Path: dk_0

Description Details

- ck_in
clk_in_reset
dk Clock Output clk_0

exported E |
Clock frequency: 12000000 Hz

clk_reset Reset Output Clock frequency is known

Reset synchronous edges: |yjgne v

HA4r M Bl X@+
0

Click the "X" on the Parameter tab to close the parameter window.

6.2.2.3 To rename the clock, right-click on the clock and select “Rename” or press CTRL+R.
Rename the clock to “clk12mhz” and press Enter.

B T e T T e
% & W system: nios_sys Path: clk_0

+ Use Con... Name Description Export

.|

X Connections

= _

: Filter >

=

- E3 Edit.. Ctrl+E

i + Add.

= ." Rename Ctrl+R

Duplicate Ctrl+D

> Remove
|‘§ Details #
a Move Up Ctrl+Shift+U
Ml Nl inta cohouctam Ctrl L Chift M

6.2.2.4 Save the Qsys system. Click File - Save As and name your gsys system nios_sys.qsys. This
is the entity name by which you will be instantiating your Qsys system in the top level file.

Click Save.

6.2.3 Add an Avalon ALTPLL for the processor and peripherals

The Avalon ALTPLL peripheral instantiates the PLL that will generate the clock for our system.

MAX1000
Nios Il Soft Core Lab

ARGV

Page |12

WWWw.arrow.com
August 2017

NARNOW

6.2.3.1 From the IP Catalog panel on the left side of the Qsys window, expand the menus for the
Basic Functions = Clocks; PLLs and Resets - PLL and select the “Avalon ALTPLL".

™ 1P Catalog 2] = [=f =]
A X &
Project ~
- New Component...
[+-System
Library

[=-Basic Functions
[H-Arithmetic

[+-Bridges and Adaptors
[=-Clocks; PLLs and Resets
* Clock Source

* Reset Controller
* Reset Sequencer

.

- @ Avalon ALTPLL RECONFIG
[+-Configuration and Programming
[F-DMA

[+-0n Chip Memory

[#-Simulation; Debug and Verification
[#-DSP

[#-Interface Protocols

[nare Drasenr

New... | Edit... + Add...

6.2.3.2 Under “General/Modes” tab (Page 1) of PLL MegaWizard change the frequency of the
clock input to 12 MHz. This source is provided by the oscillator on the MAX1000 board.

« MegaWizard Plug-In Manager [page 1 of 11]
#p ALTPLL

Parameter

Settings

Bandwidth/Ss >

General/Modes > Tnputsflock >

Clock switchover >

Currently selected device family: pax 10
ALTPLL1502202615030367 Match project/default

k0
nc| inclko frequency: 12.000 MHz cl, Able to implement the requested PLL
reset Operation Mode: Normal locked
General
Ratio]Ph (dgfDC (%]
11] 000 [s0.00]
Which device speed grade will you be using? Any =
WA
MAd0 Use military temperature range devices only
What is the frequency of the inclk0 input? | MHz - |
Set up PLL in LVDS mode Data rate: |Mot Available Mbps
PLL Type

Which PLL type will you be using?
Fast PLL Enhanced PLL @) Select the PLL type automatically
Operation Mode
Hows will the PLL outputs be generated?
(@) Use the feedback path inside the PLL
(®) In normal mode
() In source-synchronous compensation Mode
() In zero delay buffer mode
Connect the fbmimic port (bidirectional)
(1 With no compensation
Create an 'fbin' input for an external feedback (External Feedback Mode)

Which output clock will be compensated for? o v

| Cancel ‘ ‘ < Back ‘ | Next > || Einish ‘

Click Next to move to the next tab of the MegaWizard.

MAX1000 Page |13 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.3.3 “Inputs/Lock” tab (Page 2/11): Uncheck “Create an ‘areset’ input to asynchronously reset
the PLL” option.
Accept all other defaults.

s MegaWizard Plug-In Manager [page 2 of 11] ? X

& ALTPLL

> Bandwidth/ss | > clock suitchover >

ALTPLL 1502202615030367 Able to implement the requested PLL

Optional Inputs

nclkd [R cl
inclk0 frequency: 12.000 MHz ik Create an 'pllena’ input to selectively enable the PLL
Operation Mode: Normal ocke
K : 4 I [] create an 'areset' input to asynchronously reset the PLL

5000 || create an 'pfdena’ input to selectively enable the phase/frequency detector

MAX 10 Lock Output
Create 'locked' output

Enable selfreset on loss lock

Advanced Parameters
Using these parameters is recommended for advanced users only
Create output file(s) using the 'Advanced' PLL parameters

- Configurations with output clock(s) that use cascade counters are not supported

Avalon Bus connectivity
D Use a separate clock input for Avalon bus connections

[cancel | [< Back | [next> | [Einish |

6.2.3.4 Pages 3-5: Accept all defaults and click next until you reach the Output Clocks tab.

MAX1000 Page |14 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.3.5 On “cO Core/External Output” (Page 6): Click “Enter output clock frequency”. Configure
c0 as 50 MHz output. To do that, select “Enter output frequency” and enter 50 MHz. This
clock will be used as the processor system clock, clocking the Nios Il processor various
peripherals of the system. Click Next.

« MegaWizard Plug-In Manager [page 6 of 11]

"2 ALTPLL

> dkez >

c0 - Core/External Qutput Clock

ALTPLL 1502202615030367 Able to implement the requested PLL
Use this clock
Clock Tap Settings
LELY inclk0 frequency: 12.000 MHz <0, Actual Settings
Operation Mode: Normal locked, I (@) Enter output clock frequency: MHz ~ 50.000000
T_J Enter output clock parameters. =
Clock multiplication factor L =
=< Co
Clock division factor 1 = Py l:l
MAX 10
Clock duty cycle (%) s0.00 | 3] 50.00
Description Ve
Note: The displayed internal settings Primary clock VCO frequency (MHz) 30
of the PLL is recommended for use by |41 far M ronnter a5 Y
advanced users only < >

Per Clock Feasibility Indicators
c0

| Cancel ‘ | < Back | | Next > ‘ | Finish |

6.2.3.6 Click Finish. This will take you to the summary tab.
Click Finish again to close the Avalon ALTPLL MegaWizard

6.2.3.7 A component entitled “altpll_0” should appear under Module Name. Rename the Avalon
ALT PLL component to “pll”. (You can right click to bring up a menu with a rename option.)

Some errors and warnings will appear in the bottom console indicating that various ports
are not connected. Ignore these for now. We will address these connections in the

upcoming steps.

MAX1000 Page |15 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.4 Connect the incoming clock and reset to the PLL

Qsys needs to know what clock and reset sources to use as the input to the PLL component. The
clock and reset sources can come from an external source or from another component within the
Qsys system. In our case, we will be connecting them to an external clock and reset.

Click on the "System Contents" tab to return to the view of the components in our system. At this
point, there are two components, a "Clock Source" component that was in the system by default
when Qsys first launched and the "Avalon ALTPLL" component that we added in the first step.
The Clock Source component is a Qsys component which brings in a clock and reset source from
outside of the Qsys system. We will connect its nodes to the corresponding nodes of the Avalon
PLL component.

6.2.4.1 In the "Connections" column, hover over the connections and you will then be able to fill

in dots to make the connections.

6.2.4.2 Connect the “clk” Clock Output port of the Clock Source <clkl2mhz> to the
“inclk_interface” of the <pll>. Similarly connect the “clk_reset” reset output port of the
Clock Source <clk12mhz> to the “inclk_interface_reset” of the <pll> component.

6.2.4.3 Click on the "Double-click to export" field next to Conduit and name it “pll_locked”. We
will be using this as one of the inputs of the external reset component.

Your resulting connections should look as follows:

1= system Contents 82] Address Map &3 ‘ Interconnect Requirements 3 ‘ e =]
¥ system: nios_sys
* |use connections Name Description Export Clock Base End RQ Tags Opcode Name
B dk12mhz Clock Source |
o | Clock Input clk exported
B o clk_in_reset Reset Input reset
dk Clock Output clk12mhz
dlk_reset Reset Output
 pll Avalon ALTPLL
inclk_interface Clock Input clk12mhz
inclk_interface_reset Reset Input [inclk_interface]
pll_slave Avalon Memary Mapped Slave inclk_interface]
o Clock Output pll_co
il locked_conduit Conduit pll_locked

6.2.4.4 Click on File = Save and save your work periodically as you continue through the design.

MAX1000 Page |16 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.5 Add a Nios Il Processor
A CPU is needed to run the software applications.

6.2.5.1 From the IP Catalog panel on the left side of the Qsys window, expand the menus for the
Processors and Peripherals > Embedded Processors and select the Nios Il Processor.

= 1P Catalog 2@] 5 [l =]
. X K&
Project
M New Component...
[H-System

Library

[+-Basic Functions

[#-DSP

++Interface Protocols

[+-Low Power

[#-Memory Interfaces and Controllers
[=-Processors and Peripherals
[#-Co-Processors

mbedded Processors

* Nios II (Classic) Processor
ard Processor Components
ard Processor Systems
[#-Inter-Process Communication
[#-Peripherals

[+-Qsys Interconnect

[+-University Program

m

New... 4 Add...

(Note: MAX10 devices do not support the Nios Il (Classic) Processor. However, all code
developed on the classic version is fully forward compatible.)

6.2.5.2 Double-click on the name or click “Add..” to add the component to the system. The Nios
Il parameter editor window will open.

6.2.5.3 In the Main tab, ensure that the “Nios Il /e" option is selected.

6.2.5.4 The settings in the Vectors tab will be set in a later step so skip that for now.

Note that until these settings are applied, the following errors in the Qsys window are expected:

- Error: nios2_gen2_0: Reset slave is not specified. Please select the reset slave.

- Error: nios2_gen2_0: Exception slave is not specified. Please select the exception slave.

6.2.5.5 The settings in the other tabs are left as their defaults but feel free to explore the
parameter editor and see what settings can be applied to the Nios Il. Click Finish.

Note: There will be errors related to clocks as well. This will be resolved in a few steps.

6.2.5.6 Rename the Nios Il to “nios”.

MAX1000 Page | 17 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.6 Configure clock source for the Nios Il processor
At this point, there are 3 components in the system.

6.2.6.1 From the drop-down list in the Clock column, select and choose “pll_c0”. Note that we
made this connection with the connection dots in an earlier step.

6.2.6.2 Connect “reset” of the <nios> component to “clk_reset” of the <clk12mhz> component.

6.2.6.3 Also connect “data_master” of the <nios> component to “pll_slave” of the <pll>
component.

Your system should look as follows:

1= system contents S@‘ Address Map 3 | Interconnect Requirements 5% ‘ =
~ W system: nios_sys Path: nios.ck
* luse connections Name Description Export Clock Base End RQ Tags Opcade Name
2 & dk12mhz Clock Source
X o dkin Clock Input Il exported
=] o dkin_resat Reset Input reset
= ck Clock Output clk12mhz
~ —————— dkreset Reset Output
a pll Avalon ALTRLL
v inclk_interface Clock Tnput clk12mhz
x inclk_intetface_resat Reset Input [inclk_interface]
pll_slave Avalon Memory Mapped Slave [inclk_interface] 0x0001_ 0040 0x0001_004£
co Clack Qutput pll_co
<1 locked_conduit Conduit pll_locked
EH nios Nios 11 Processor
Clock Input Double-click to export IR
[reset Reset Input
data_master Avalon Memory Mapped Master pll_co
instruction_master Avalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ 0O IRQ 31|
“———| debug_reset_request Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0001_0800 0x0001_Offf
custom instruction master |Custom Instruction Master

6.2.7 Add On-Chip Memory

Intel FPGAs provide internal on-chip memory blocks that can be used to build up an internal RAM
(or ROM) block of memory. In this lab, this provides Nios Il with access to very low-latency, high
speed memory for executable code and variable storage.

6.2.7.1 In the IP Catalog panel, type “on-chip” in the search bar. You should see the On-Chip
Memory (RAM or ROM) appear under Basic Functions - On Chip Memory.

% IP Catalog } -go
. on-chip X he
Project
Lol e Component...
Library

[=)Basic Functions
[=-0n Chip Memory

;- ® Altera On-Chip Flash
.

Avalon FIFO Memory

Avalon-ST Dual Clock FIFO
Avalon-ST Multi-Channel Shared Mem
Avalon-ST Round Robin Scheduler

Avalon-ST Single Clock FIFO
{On-Chip Memory (RAM or ROM

< >

New... | | Edit... 4 Add...
MAX1000 Page |18 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.7.2 Double click the component or select it and click "Add..." to add it to the system. The On-
Chip Memory parameter editor will open.

6.2.7.3 Change the total memory size parameter to 32768 bytes or type 32k and the field will

update.
2 On-Chip Memory (RAM or ROM) - onchip_memory2_0 =
“ On-Chip Memory (RAM or ROM)
Megacorw DItEra_avalon_onchip_memory2 Documentation
[Block Diag | | .
~ Memoi
["] show signals N Ty type
Type: RAM (Writable)
Dual-port access
onchip_memory2 0 L -
Single clock operation
clkl
; lock Read During Write Mode: DONT_CARE
s i =
avalon
Block 5
Saatl) ock type AUTO ~
altera_avalon_onchip_memaony
|- size
Enable different width for Dual-port access
Slave 51 Data width: 2
Total memory size: 32768 bytes
Minimize memory block usage (may impact fmax)
|~ Read latency
Slave s1 Latency: 1~
Slave s2 Latency: i
|~ ROM/RAM y i |
Reset Request: Enabled
[Ecc |
Extend the data width to support ECC bits: | pisabled
[Memory initiaizati |
Initialize memory content
O AT T P el T i
< > < >

6.2.7.4 Accept the defaults for the remaining fields and click Finish to add the component to the
system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.7.5 Rename the component to “onchip_ram”.

6.2.7.6 Using the Clock column, change the clock input of the “onchip_ram” to pll_cO clock

source.
MAX1000 Page |19 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.7.7 Using the Connections column, connect the “s1” Avalon Memory Mapped Slave interface
of the <onchip_ram> to the <nios> instruction_master and data_master.

1= system Contents S@} Address Map 3% | Interconnect Requirements 51

- o

~ Wl system: nios_sys Path: onchip_ram

Use Connections

Name

B dk12mhz
dk_in
dlk_in_reset

o
o
ok
< dkreset
B pl
inclk_interface_reset
o

Hda4rH Bl xm+

incli_interface
pll_slave
@
locked_conduit

B nios
dk
reset
data_master
instruction_master
irq
debug_reset_request
debug_mem_slave
custom_instruction_master

Description
Clock Source

Clock Input

Resat Input

Clock Output

Reset Output

|Avalon ALTPLL

Clock Input

Reset Input

|Avalon Memory Mapped Slave
Clack Output

Conduit

Nios II Frocessor

Clock Input

Reset Input

|Avalon Memary Mapped Master
|Avalon Memary Mapped Master
Interrupt Receiver

Reset Output

|Avalon Memory Mapped Slave

Custom Instruction Master

On-Chip Memory (RAM or ROM)
Clock Input

|Avalon Memory Mapped Slave
Reset Input

6.2.8 Add the JTAG UART Peripheral

Export

clk

pll_locked_conduit

Clock

exported
clk12mhz

(clic1 2mhz
[incli_interface]

[incliCinterface]
pil_co

pil_co

Base

0x0001_0040

0x0001_0800

0x0000_8000

End

0x0001_004f

IRQ 0| IRO 31

0x0001_0££f

0x0000_fErf

RQ Tags Opeode Name

Many software developers like to have access to a debug serial port from the target to leverage
<printf> debugging, input control, log status information, etc. The JTAG UART connects to Nios I
processor to the debugger console in the Nios Il IDE for easy debug and development using a

console interface.

6.2.8.1 In the IP Catalog search bar, type JTAG UART. You should see the JTAG UART peripheral

appear under Interface Protocols - Serial.

= IP Catalog 23]

-2

\

¥ &

Project
-l New Component...
Library
[=l-Interface Protocols
=-Serial
i @ JTAG UART

New... | | Edit...

+ Add...

6.2.8.2 Double-click the component or select it and click "Add..." to add it to the system. The JTAG

UART parameter editor will open.

MAX1000
Nios Il Soft Core Lab

ARGV

Page |20

WWWw.arrow.com
August 2017

NARNOW

6.2.8.3 Verify that the parameters for the Write and Read FIFO are the same as below.

« JTAG UART - jtag_uart_0

“ JTAG UART

Mogocors Altera_avalon_jtag_uart

|~ Block Diagram W o
[] Show signal [~ Write FIFO (Data from Avalon to JTAG)
R Buffer depth (bytes): g4 ~
IRQ threshold: a
jtag_uart_0

|:| Construct using registers instead of memory blocks
clk

clock interrupt

|~ Read FIFO (Data from JTAG to Avalon)
Buffer depth (bytes): g4 ~

IRQ threshold: a

eset

reset

avalon_jtag slave '
avalon

altera_avalon_jtag

|:| Construct using registers instead of memory blocks

£ >

*. Warning: jtag_uart_0: ITAG UART IF input clock need to be at least double (2x) the operating frequency of JTAG TCK on board

Cancel Finish

6.2.8.4 Click Finish to add the component to the system. Don’t worry about the errors; they will
be addressed later.

6.2.8.5 Rename the component to “jtag_uart”.
6.2.8.6 Connect the Avalon_jtag_slave_port of the <jtag_uart> to the data_master of the <nios>.
6.2.8.7 In the clock column, select pll_cO as the Clock Input.

6.2.8.8 Connect the irq port of the <jtag_uart> to the irq of the <nios> processor.

MAX1000 Page |21 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

At this point, there are 5 components in the system and should look as follows:

1= System Contents 23\ Address Map 22| Interconnect Requirements ’ZS‘

==

% & W system: nios sys Path: jtag_uart

Use Connections Name

B clk12mhz
clk_in
elk_in_reset

o
o
ok
— creset
@ pl
pll_slave
o
—

Hda4r M Bl X+

incll_interface
inclk_interface_reset
€0
locked_conduit

B nios
clk
reset
data_master

instruction_master
irq

debug_reset_request
debug_mem_slave
custom_instruction_master
B onchip_ram

clkl

s1

l reset
avalon_jtag_slave
irq

6.2.9 Add SPI Interface

Description
Clock Source

Clock Input

Reset Input

Clock Output

Reset Output

Avalon ALTPLL

Clock Input

Reset Input

Avalon Memory Mapped Slave
Clock Output

Conduit

Nios TT Processor

Clock Input

Reset Input

Avalon Memory Mapped Master
Avalon Memory Mapped Master
Interrupt Receiver

Reset Output

Avalon Memory Mapped Slave
Custom Instruction Master
On-Chip Memory (RAM or ROM)
Clock Input

Avalon Memory Mapped Slave
Reset Input

JTAG UART.

Clock Input

Reset Input

Avalon Memory Mapped Slave

Interrupt Sender

Export

clk

pll_locked_conduit

Clock

exported

clk12mhz

dk12mhz
[indli_interface]
[indliCinterface]
pll_c0

plLco
[clk)
[clk)
Iclk)
Iclk)
Iclk)
Iclk)

pl_c0
[cki]
[cki]

pll_co
[clk]
[clk]
[cik]

Base

0x0001_0040

IRO O

0x0001_0800

0x0000_8000

0x0001_0058

End

0x0001_004f

IRO 31

0x0001_0fff

0x0000_ffff

0x0001_005£

RQ Tags

Opcode Name

To make a connection with the on-board accelerometer of the MAX1000, an SPI interface

connection is needed.

6.2.9.1 In the IP Catalog panel, type “spi” in the search bar. You should see the SPI (3 Wire Serial)

appear under Interface Protocols - Serial.

[=+Basic Functions
[=-On Chip Memory

[=hInterface Protocols
[=-Serial

Bl 5P (3 Wire Serial
[=} Memory Interfaces and Controllers
[-Flash

[=}-Processors and Peripherals
[=-Peripherals
- ® SPI Slave to Avalon Master Bridge
[=-University Program
[=-Generic 10
& Accelerometer SPI Mode

“S Ip Catalog %] =
L, spi X &3
Project
- New Component...
Library

i ® Avalon-ST Serial Peripheral Interface (|

* Altera Generic QUAD SPI controller
‘. ® Altera Generic QUAD SPI controller I

New... Edit....

& Add...

6.2.9.2 Double-click the component or select it and click "Add..." to add it to the system. The SPI

(3 Wire Serial) parameter editor will open.

6.2.9.3 Change the SPI Clock rate (SCLK) to 1 MHz or type 1m and the field will update.

MAX1000
Nios Il Soft Core Lab

ARGV

Page |22

WWWw.arrow.com
August 2017

NARNOW

& SPI (3 Wire Serial) - spi_0

X

- Documentation |

spi_control_port

“ SPI (3 Wire Serial)
Megaterss Altera_avalon_spi
- Block Diagram
[] show signals
spi_0
el lock intermup
eset
P st

extemal

avalon

nduit

altera_avalon_s|

~ Master/Slave |
Type: Master ~
Number of select (SS_n) signals (one for each slave): |1
SPI clock (SCLK) rate: 1UUUUUU\ Hz
Actual clock rate: 0.0 Hz
[] specify delay
Target delay: 0.0 ns
Actual delay: 0.0 ns
|' Data register
Width: 8 v bits
Shift direction: MSB first ~
~ Timing
Clock polarity: 0~
Clock phase: 0~
[Synchronizer Stages

|:| Insert Synchronizers
Depth:

Cancel

6.2.9.4 Accept the defaults for the remaining fields and click Finish to add the component to the
system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.9.5 Rename the component to “spi_lis3dh”.

6.2.9.6 In the clock column, select pll_cO as the Clock Input.

6.2.9.7 Connect the spi_control_port of the <spi_lis3dh> to the data_master of the <nios>.

6.2.9.8 In the clock column, select pll_cO as the Clock Input.

6.2.9.9 Connect the irq port of the <spi_lis3dh> to the irq of the <nios> processor.

6.2.9.10 Finally, click in the "click to export" field next to the external_connection Conduit and
name it “spi_lis3dh”.

MAX1000

Nios Il Soft Core Lab

ARGV

Page |23

WWW.arrow.com
August 2017

NARNOW

6.2.9.11 At this point, there are 6 components in the system and should look as follows:

1= system contents S@} Address Map 5% ‘ Interconnect Requirements & ‘

|« W4 system: nios sys Path: spi_lis3dh

6.2.10 Add PIO Peripheral for Accelerometer Interrupts

indlk_interface
inclk_interface_reset

instruction_master

ig

debug_reset_request
debug_mem_slave
custom_instruction_master

+ | Use connestions Name Description
el B cki2mhz Clock Source
X clk_in Clock Tnput
= clk_in_reset Reset Input

= dk Clock Output
i clk_reset Reset Output

2 pll \Avalon ALTPLL

v

x

Clock Input
Reset Input

pll_slave Avalon Memory Mapped Slave
@ Clock Qutput
locked_conduit Conduit
21 nios Nios II Processor
dk Clock Input
reset Reset Input
data_master Avalon Memory Mapped Master

Avalon Memory Mapped Master
Interrupt Receiver

Reset Output

Avalon Memory Mapped Slave
Custom Instruction Master

B onchip_ram On-Chip Memory (RAM or ROM)
dlk1 Clock Input
st Avalon Memory Mapped Slave
resetl Reset Input
B jtag_uart JTAG UART
dk Clock Input
reset Reset Input
avalon_jtag_slave Avalon Memory Mapped Slave
irg Interrupt Sender
— SPI(3 Wire Serial)
‘ ck Clock Input
T reset Reset Input
spi_control_port Avalon Memory Mapped Slave
irg Interrupt Sender
external Conduit

Export Clock
clk exported
reset
clk12mhz
k1 2mhz

pll_co
pll_locked_conduit

pil_co
[clk]
[clk]
[clk]
[clk]
[clk]
[clk]

pll_co
[clk1]
[clk1]

pll_co
[clk]
[clk]
[clk]

pll_co
[clk]
[clk]
[clk]

spi_lis3dh

[inclk_interface]
[inclk_interface]

Base

0x0001_0040

0x0001_0800

0x0000_8000

0x0001_0058

0x0001_0000

IRQ 0|

End

0x0001_004f

IRQ 31

0x0001_0fff

0x0000_ffff

0x0001_005£

0x0001_001£

-0
RQ Tags Opcode Name
o

The LIS3DH accelerometer has two interrupt pins. You can use an input PIO peripheral so the

processor can detect when those interrupts are triggered

6.2.10.1 In the IP Catalog panel, type “pio” in the search bar. You should see the PIO (Parallel I/0)
appear under Processors and Peripherals - Peripherals.

Noio

1P Catalog 5:3]

o = i=)

X &

Project

L. New Component...
Library

[=hInterface Protocols

. [=-PCI Express

D .

!_iJ--P_rocessorS and Peripherals
[=)-Peripherals

‘- » PIO (Parallel I/0)

[=-QSYS Example Designs

New... Edit...

& Add...

6.2.10.2 Double-click the component or select it and click "Add..." to add it to the system. The
PIO (Parallel I/0O) parameter editor will open.

MAX1000
Nios Il Soft Core Lab

ARGV

Page |24

WWWw.arrow.com
August 2017

NARNOW

6.2.10.3 Set the width to 2 bits. Ensure that the direction is Input.

6.2.10.4 Make sure Synchronous Capture is enabled along with RISING as the Edge Type, under
Edge capture register.

6.2.10.5 Make sure Generate IRQ in enabled along with EDGE as the IRQ Type, under Interrupt.

2 PIO (Parallel 1/0) - pic_0 X
“ PIO (Parallel 1/0)
Megacors: Altera_avalon_pio Documentation
- Block Diagram = = o
[show signals =S |
9 Width (1-32 bits): A
Direction: Bidir
pio_0 O
(@ Input
s lock interrupt)
lock Tupt]
- O mout
51 () output
gxtemal_cannection | o L Output Port Reset Value: |0:x0000000000000000
altera_avalon| | = Output Register |

Enable individual bit selting/clearing

- capture register |

Synchronously capture
Edge Type: RISING v

[] Enable bit-clearing for edge capture register

" Interrupt
Generate IRQ
IRQ Type: EDGE

Level: Interrupt CPU when any unmasked I/0 pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

"~ Test bench wiring

< 2 ["] Hardwire PIO inputs in test bench o

(@ Info: pio_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

Cancel

6.2.10.6 Accept the defaults for the remaining fields and click Finish to add the component to the
system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.10.7 Rename the component to “pio_lis3dh”.

6.2.10.8 In the clock column, select pll_cO as the Clock Input.

6.2.10.9 Connect the sl of the <pio_lis3dh> to the data_master of the <nios>.
6.2.10.10 Connect the irq port of the <pio_lis3dh> to the irq of the <nios> processor.

6.2.10.11 Finally, click in the "click to export" field next to the external_connection Conduit and
name it “pio_lis3dh”.

MAX1000 Page | 25 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.11 Add PIO peripheral for LEDs
The MAX1000 has 8 LEDs on it. You can drive those LEDs with an output PIO peripheral.

6.2.11.1 In the IP Catalog panel, type “pio” in the search bar. You should see the PIO (Parallel I/0)
appear under Processors and Peripherals - Peripherals.

6.2.11.2 Double-click the component or select it and click "Add..." to add it to the system. The
P10 (Parallel 1/0) parameter editor will open.

6.2.11.3 Set the width to 8 bits. Ensure that the direction is Output.

& PIO (Parallel I/O) - pio_0 X
“ PIO (Parallel 1/0)
Megatorsw 0ItEra_avalon_pio Documentation
[+ Block Diagram | — °
[] show signals E |
Width (1-32 bits): g
Direction: Bidir
pio_0 O
Input
Al lock O i
eset saat O el
I
s ’ @ output
external_connection _— Output Port Reset Value: |nxnnnn00o000000000
......
altera_avalon_pio |- Output i |

["] enable individual bit setting/clearing

|~ Edge capture register]
Synchronously capture

Edge Type: RISING

Enable bit-clearing for edge capture register

|‘ Interrupt
Generate IRQ
IRQ Type: LEVEL

Level: Interrupt CPU when any unmasked I/O pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

|' Test bench wiring

Hardwire PIO inputs in test bench i

Cancel

6.2.11.4 Accept the defaults for the remaining fields and click Finish to add the component to the
system. Don’t worry about the errors, they will be resolved later in the lab.

6.2.11.5 Rename the component to “pio_leds”.
6.2.11.6 In the clock column, select pll_c0 as the Clock Input.

6.2.11.7 Connect the sl of the <pio_leds> to the data_master of the <nios>.

MAX1000 Page | 26 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.11.8

name it “pio_leds”.

6.2.12 Add a System Peripheral ID

Finally, click in the "click to export" field next to the external_connection Conduit and

This is a VERY IMPORTANT peripheral to have in your system. It allows the Nios Il development
tools to validate that the software application is being built for the correct hardware system.

6.2.12.1 In the IP Catalog panel, type “system id” in the search bar. You should see the System
Peripheral ID appear under Basic Functions - Simulation; Debug and Verification -
Debug and Performance.

“= 1P Catalog 22]

|

. system id

x| i

Project
-8 New Component...
Library
[=-Basic Functions
i':"--S_imuIation; Debug and Verification
[=}-Debug and Performance

B R System ID Peripheral

Newy... Edit

&= Add...

6.2.12.2 Double-click the component or select it and click "Add..." to add it to the system. The
System Peripheral ID parameter editor will open.

6.2.12.3 Edit the 32 bit System ID to any value you like, or use 0x00001234.

& System ID Peripheral - sysid_gsys_0

“ System ID Peripheral
Megotors Dltera_avalon_sysid_qsys

"~ Block Diagram

[] Shows signals

sysid_qgsys_0

clk

eset

control_slave .
avalon

altera_avalon_sysid_gsys

6.2.12.4 Select Finish and ignore the errors.

MAX1000
Nios Il Soft Core Lab

ARGV

Page

"~ Parameters

32 bit System 1D: |0xn0001234|

"~ Description

Please use hexadecimal numbers only in System ID.

| 27

WWWw.arrow.com
August 2017

6.2.12.5 Rename the component to “sys_id”.

6.2.12.6 In the clock column, select pll_cO as the Clock Input.

6.2.12.7 Connect the control_slave of the <sys_id> to the data_master of the <nios>.

6.2.12.8 At this point, there are 9 components in the system and should look as follows:

1= System Contents SZI Address Map &% ‘ Interconnect Requirements 3% ‘ - =
% |4 W system: nios sys Path: sys id
: Use Connections Name Description Export Clock Base End RQ Tags
weneu_wuimun Conuunt e
% a1 nios Nios 1T Processor e
= dk Clock Input pll_co
reset Reset Input [clk]
= data_master Avalon Memory Mapped Master [clk]
a instruction_master Avalon Memory Mapped Master [clk]
v irg Interrupt Receiver [clk] IRQ 0 IRQ 31fF—
~ debug_reset_request Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0001_0800 0x0001_0£ff
custom_instruction_master |Custom Instruction Master
B enchip_ram On-Chip Memory (RAM or ROM)
dki Clock Input pll_co
s1 Avalon Memory Mapped Slave [clk1] 0x0000_8000 0x0000_f£££f
resetl Reset Input [chk1]
H jtag_uvart JTAG UART
dk Clock Input pll_co
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0001_0058 0x0001_005f
irq Interrupt Sender [clk] —
= spi_lis3dh SPI (3 Wire Serial)
dk Clock Input pll_co
reset Reset Input [clk]
spi_control_port Avalon Memory Mapped Slave [clk] 0x0001_0000 0x0001_001f
irq Interrupt Sender [ck] >—@
external Conduit 'spi_lis3dh
= pio_lis3dh PIO (Parallel 1/0)
dk Clock Input pll_co
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk] 0x0001_0030 0x0001_003f
external_connection Conduit pio_lis3dh
irq Interrupt Sender [clk] —p
2 pio_leds PIO (Parallel /0)
dk Clock Input pll_co
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk] 0x0001_0020 0x0001_002f
external_connection Conduit pio_leds
System 1D Peripheral
L]
- reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clk] 0x0001_0050 0x0001_0057 v
< >
o4t W ¥ current filter:

MAX1000

Nios Il Soft Core Lab

ARGV

Page |28

Www.arrow.com

August 2017

NARNOW

6.2.13 Resolve the Errors

At this point, Qsys will report a number of errors referencing unconnected clocks, unconnected
resets, and unconnected Avalon interface because some of the components in your Qsys system
are not fully connected. Once all the interfaces are connected, these errors will disappear.

6.2.13.1 Assign Base Addresses

When the peripherals were added to the system, they we all given the default base address of
0x0000000, so the components now have overlapping addresses. Qsys will report this as an error.
You can manually enter the base addresses in the Base column, or you can let Qsys automatically
assign them. Automatically assign them by selecting: System = Assign Base Addresses.

a5 Qsys - nios_sys.qsys* (C\FPGA_Projects\MAX1000\MAX 1000
File Edit System Generate View Tools Help

. o Upgrade IP Cores... o

g Assign Base Addresses [x| ¥

Assign Interrupt Numbers
Assign Custom Instruction Opcodes
Create Global Reset Network

Show System With Qsys Interconnect

Remove Dangling Connections

= Import Interface Requirements...
G- Qeyd e

[+-University Program

6.2.13.2 Create Global Reset Network

In some cases, the reset ports of the components may not have been connected. You can
manually connect these ports, or you can let Qsys automatically connect them. Automatically
connect them by selecting: System - Create Global Reset Network.

== Qsys - nios_sys.qsys* (C\FPGA_Projects\MAX1000\MAX 1000,
File Edit System Generate View Tools Help

™ 1p ca Upgrade IP Cores... =0

) Assign Base Addresses x| B

Assign Interrupt Numbers
Assign Custom Instruction Opcodes
Create Global Reset Network

Show System With Qsys Interconnect
Remove Dangling Connections

Import Interface Requirements...

[H]-University Program

6.2.13.3 Define the Nios Il Reset and Exception Vectors

MAX1000 Page |29 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

Like any processor, the Nios Il requires memory locations to jump to in the event of a processor
reset or exception within the execution of its code. The reset vector is the memory location to
which the processor jumps on processor reset and the exception vector is the memory location
to which the processor jumps on an exception. These are typically in non-volatile memory and
can be at the same memory location.

6.2.13.3.1 To set these vectors, double-click on the Nios Il component <nios>. The Nios Il
parameter editor will reopen.

6.2.13.3.2 Click on the Vectors tab and set both the reset vector memory and exception vector
memory to be onchip_ram.s1 from the pull-downs. The offset and vector values may
be different that the image below but will be corrected in a following step.

‘¥ Parameters 33] e] (]

¥ nios_sys Path: nios

Nios II Processor
altera_nios2_gen2 Details

A
Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settings

[~ Reset vector
Reset vector memory: onchip_ram.s1 ~
Reset vector offset: 000000000
Reset vector: 000008000

[~ Exception Vector
Exception vector memory: onchip_ram.s1 b
Exception vector offset: 0x00000020
Exception vector: 0x00008020

[~ Fast TLB Miss Exception Vector
Fast TLB Miss Exception vector memory: | [jgne

Fast TLB Miss Exception vector offset: 0x00000000
Fast TLB Miss Exception vector: 0x00000000

6.2.13.4 Review message window for remains errors.
At this point there should be no remaining errors in the message window. If there are,
please refer again to the previous steps to resolve them.

MAX1000 Page |30 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.14 Set Interrupt Priorities

The Nios Il processor can process up to 32 independent interrupts (IRQs) from various parts of a
system that can be assigned unique priorities. This system only has 3 interrupts and the priorities
will need to be set manually depending on the user’s needs although it can be done automatically
by selecting System - Assign Interrupt Numbers from the Qsys menu as below.

2= Qsys - nios_sys.qsys* (C\FPGA_Projects\MAX10004\MAX1000_
File Edit System Generate View Tools Help
Upgrade IP Cores... =
. Assign Base Addresses [x| &
Assign Interrupt Numbers

Assign Custom Instruction Opcodes
Create Global Reset Network

™ 1p Ca

Show System With Qsys Interconnect

Remove Dangling Connections

Import Interface Requirements...

[H-University Program

You can also manually set an IRQ priority in Qsys by double clicking the number in the IRQ column
of the System Contents tab and entering the priority (priority 0 is the highest priority. For example,
double click the number in the IRQ column to the right to the "irg" signal in the <spi_lis3dh>
component and type 0. This will give the <spi_lis3dh> component's interrupt the highest priority.

¢ rrr e g g i

L

instruction_master |Avalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ O IRQ 31f
debug_reset_requ...|Reset Qutput [clk]
debug_mem_slave |Avalon Memory Mapped Slave [clk] 0x0001_0800 0x0001_0fff
custom_instructio... |Custom Instruction Master

= onchip_ram On-Chip Memory (RAM or ROM)
clk1 Clock Input pll_co
s1 Avalon Memory Mapped Slave [clk1] 0x0000_8000 0x0000_f£fff
resetl Reset Input [clk1]

E jtag uart ITAG UART
clkc Clock Input pll_co
reset Reset Input [clk]
avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x0001 1038 0x0001_103f
irq Interrupt Sender [clk] >—E|

B spi_lis3dh SPI (3 Wire Serial)
clk Clock Input pll_co
reset Reset Input [clk]
spi_control_port Avalon Memary Mapped Slave [clk] 0x0001_1000 0x0001_101f
irg Interrupt Sender [clk] | 0| |

< external Conduit spi_lis3dh

= pio_lis3dh FI0 (Parallel I/0)
clk Clock Input pll_co
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0000_0000 0x0000_000E

< external_connection |Conduit pio_lis3dh

irq Interrupt Sender [clk] >—E|

2 pio_leds FI0 (Parallel I/O)
ke Clark Tnaut nll 0

MAX1000 Page |31 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

6.2.15 Check the full system

Below is a screenshot of the full Qsys system with all connections visible.

6.2.15.1 Confirm that your Qsys matches the screenshot below.

1= system Contents 3% ‘ Address Map £2 | Interconnect Requirements &% | - =
W System: nios_sys Path: sys_id
* | use connections Name: Description Export Clack Base End RQ Tags
el B clki12mhz Clock Source ~
X o4 dkin Clock Input cllc exported
= o= dk_in_reset Reset Input reset
= dk Clock Output clk12mhz
= ————————— clk_reset Reset Output
2 pll \Avalon ALTPLL
i incli_interface Clock Tnput clk12mhz
= inclk_interface_reset Reset Tnput [inclk_interface]
pll_slave \Avalon Memory Mapped Slave [inclk_interface] 0x0001_0040 0x0001_004%
0 Clock Qutput pll_co
o locked_conduit Conduit pll_locked_conduit
B nios Nios II Processor
dk Clock Input pll_cD
reset Resat Input [clk]
data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ 0 IRQ 31—
»———| debug_reset_request Reset Output [clk]
debug_mem_slave \Avalon Memory Mapped Slave [clk] 0x0001_0800 0x0001_0fff
custom_instruction_master |Custom Instruction Master
B onchip_ram on-Chip Memory (RAM or ROM)
dlkt Clock Tnput pll_co
s \Avalon Memory Mapped Slave [clk1] 0x0000_8000 0x0000_fff
resetl Reset Input [ck1]
B jtag_uart JTAG UART
ck Clock Input pil_c0
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0001_0058 0x0001_005£
irg Interrupt Sender [clk] —
B spi_lis3dh SPI(3 Wire Serial)
ck Clock Input pli_co
reset Reset Input [clk]
spi_control_port \Avalon Memory Mapped Slave [clk] 0x0001_0000 0x0001_001£
irg Interrupt Sender [clk] —d
< external Conduit \spi_lis3dh
B pio_lis3dh P10 (Parallel /0)
clic Clock Tput pll_co
reset Reset Input [clk]
st \Avalon Memoary Mapped Slave [clk] 0x0001_0030 0x0001_003f
o external_connection Conduit pio_kis3dh
irg Interrupt Sender [clk] —Fl
B pio_leds PIO (Parallel /0)
clk Clock Input pll_co
reset Reset Input [clk]
st Avalon Memory Mapped Slave [clk] 0x0001_0020 0x0001_002f
S external_connection Conduit pio_leds
B sys_id System 1D Peripheral
ck Clock Input pll_co
reset Reset Input [clk]
control_slave \Avalon Memory Mapped Slave [clk] 0x0001_0050 0x0001_0057 AE
< >
A e ¥ current filter:

6.2.15.2 Make sure there are no errors messages in the Messages tab.

MAX1000

Nios Il Soft Core Lab

ARGV

Page |32

Www.arrow.com

August 2017

NARNOW

6.2.16 Generate the Qsys System

One of the great parts about Qsys is that it generates HDL (hardware description language) code
from the created system so that the internals can be investigated for a better understanding. The
next step is to generate the HDL from the system.

6.2.16.1 Select Generate > Generate HDL... from the Qsys menu or alternately click the
Generate HDL... button on the bottom right of the Qsys window.

2 Qsys - nios_sys.qsys* (C\FPGA_Projects\MAX1000\MAX1000_ni
Eile Edit System Generate View Tools Help

Generate HDL... = o
Generate Testbench System...

Generate Example Design... > ¢ B

: ___j‘-’CLEW Comp.. _Ehow Instantiation Template... W
[+-System
Library Generate HDL... | Finish

nnnnnnnnnnnnnnnn

6.2.16.2 The Generate window will appear. Select "VHDL" as the synthesis language and "None"
from the simulation model dropdown (Verilog can be used but the top-level file in this
lab is in VHDL). Unselect “Create block symbol file(.bsf)” since this will not needed for
this lab.The generated HDL files will appear in the directory pointed to by the file path
specified under the Output Directory section. Leave this as the default.

-2 Generation X

|~ Synthesis

Synthesis files are used to compile the system in a Quartus Prime project.

Create HDL design files for synthesis: |yHpL

["] create timing and resource estimates for third-party EDA synthesis tools.

[create block symbol file (.bsf

[Simulat

The simulation model contains generated HDL files for the simulator, and may include simulation-only features.

Simulation scripts for this component will be generated in a vendor-specific sub-directory in the specified output directory.

Follow the guidance in the generated simulation scripts about how to structure your design's simulation scripts and how to use the
ip-setup-simulation and jp-make-simscript command-line utilities to compile all of the files needed for simulating all of the IP in your design

Create simulation model: None v

|~ Output Directory

Path: C:/FPGA_Projects/MAX1000/MAX1000_nios_lab/nios_sys
< >
MAX1000 Page |33 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.16.3 Click Generate.
Qsys will generate the necessary HDL for synthesis. When the generate process
completes, click Close.

-+ Generate Completed X

Wi @ 4 ©
@mﬁmﬁmr'mn nect_U instantiated aftera_T nTeFlﬁnT.l'ltlT)'le_xEF"T'
@ Info: Reusing file C:/FPGA_Projects/MAX1000/ MAX1000_nios_lab/ nios_sys/synt
@ Info: rsp_demux: "mm_interconnect_0" instantiated altera_merlin_demultiplexer "
@ Info: rsp_demux_003: "mm_interconnect_0" instantiated altera_merlin_demultiple
@ Info: rsp_mux: "mm_interconnect_0" instantiated altera_merlin_multiplexer "rsp_r
@ Info: Reusing file C:/FPGA_Projects/ MAX1000/ MAX1000_nios_lab/ nios_sys/synt
@ Info: rsp_mux_001: "mm_interconnect_0" instantiated altera_merlin_multiplexer "
@ Info: Reusing file C:/FPGA_Projects/ MAX1000/ MAX1000_nios_lab/ nios_sys/synt
@ Info: crosser: "mm_interconnect_0" instantiated altera_awvalon_st_handshake_clo
@ Info: avalon_st_adapter: "mm_interconnect_0" instantiated altera_awvalon_st_ad:
@ Info: error_adapter_0: "avalon_st_adapter” instantiated error_adapter "error_ac
@ Info: nios_sys: Done "nios_sys" with 33 modules, 52 files

@ Info: qsys-generate succeeded.

@ Info: Finished: Create HDL design files for synthesis v
< >

(&) Generate: completed successfully.

6.2.17 Add the Qsys System to the Quartus Project

The system created in Qsys now needs to be added to your Quartus project so that it can be
instantiated in the top-level design file. You can think of the Qsys system as a module or
component as you would in any other FPGA design. Qsys generates IP "pointer" files for both
synthesis (.gip) and simulation (.sip) that will point Quartus to all the necessary design files
needed to synthesize or simulate the Qsys system. Press OK to close as the .qip file will be added
to the project in the following steps.

Gk Quartus Prime X

Iﬂ You have created an IP Variation in the file
C:/FPGA_Projects/MAX1000/MAX1000_nios_lab/nios_sys.qsys.

To add this IP to your Quartus project, you must manually add
the .gip and sip files after generating the IP core.

The .gip will be located in
<generation_directory>/synthesis/nios_sys.qip

The .sip will be located in
<generation_directory>/simulation/nios_sys.sip

6.2.17.1 Open the project files manager: Project > Add/Remove Files in the Project from the
Quartus Prime menu.

6.2.17.2 Browse through the synthesis directories:
(it should be <project_directory>/nios_sys/synthesis/) and select nios_sys.qip.

MAX1000 Page |34 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.17.3 Click "Add" to add the .qip file to the project. Click "Apply" and "OK".

Select the design files you want to include in the project. Click Add All to add all design files in the project directory to the

project.
File name: | | Add
< x| addal
File Name Type Library Design Entry/Synthesis Tool Remove
nios_sys/synthesis/nios_sys.qip IP Variation File (.qip) <None> N
nios_lab_top.vhd VHDL File <None> p
RESET_GEN.vhd VHDL File <None> B
nios_lab_top.sdc Synopsys Design Constraints File <None>
Properties

6.2.18 Instantiate the Embedded System Component in the top-level entity

Having done the above steps, we will need to instantiate our Qsys component in our top-level

entity.

6.2.18.1 Inthe Qsys window, select Generate = Show Instantiation Template...

MAX1000

aa Osys - nios_sys.gsys (C\FPGA_Projects\MAX10004MAX 1001

File Edit System Generate View Tools Help

Eljplcat'a!lug = ' Generate HDL...

Generate Testbench System...

F

m | . Generate Example Design... >t

ol
| A
Project Show Instantiation Template...
E:-'}--S',rstem
Library

------ W New Compe o

Page |35

Nios Il Soft Core Lab

ARGV

WWW.arrow.com
August 2017

NARNOW

6.2.18.2 Select VHDL as the HDL Language. The following template will be shown which can
be easily copied into your project, saving you valuable time.

«= Instantiation Template *
You can copy the example HDL below to declare an instance of nios_sys.
HDL Language: WHDL
Example HDL
component nios_sys is
port (
clk_clk : in std logic = '¥'; -- clk
pio_leda export : out atd logic wector(7 downto 0); — EBXport
pio_lis3dh export : in std logic_wector(l downto 0) := (others => "X"); —— export
pll locked conduit export : out std logic: —— export
reset reset n : in std logic = "¥'; — reset n
spi_lis3dh MISO : in std logic e G —— MI50
spi_1is3dh MOSI : out std logic: —— MOST
spi_lis3dh S5CLE : out atd logic; — SCLE
spi 1is3dh 55 n : out atd logic — il
)
end component nios_sys;
ul : component nics_sys
port map
clk clk =» CONNECTED TO clk clk, == clk.clk
pio_leda_ export =» CONNECTED T0_pio_leds_export, == pic_leds.export
pio_lis3dh export =» CONNECTED T0_pio_lis3dh_export, pio_lis3dh.export
pll locked conduit_export => CONNECTED TO pll locked conduit export, -— pll_locked conduit.export
reset_reset n => CONNECTED TO reset_reset n, =5 reset.react n
spi_lis3dh MISO => CONNECTED TO spi lis3dh MISO, —— spi_lis3dh.MISO
spi_lis3dh MOSI => CONNECTED TO spi lis3dh MOSI, =5 -MOST
spi_lis3dh SCLK => CONNECTED TO spi lis3dh SCLE, - . SCLE
spi 1is3dh S5 n => CONNECTED TO spi lis3dh 55 n - .55 n
):
Copy Close

6.2.18.3 There are two parts that would need be copied to the top-level entity “nios_lab_top”.
e nios_sys Component Declaration (highlighted in red)
Copy this section and paste in the architecture section of “nios_lab_top” before
the word begin. There should be a commented area indicating where exactly.
e nios_sys Component Instantiation (highlighted in blue)
Copy this section and paste in the architecture section of “nios_lab_top” after
the word begin. There should be a commented area indicating where exactly.

MAX1000 Page |36 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

Top-level entity Qsys component declaration areas:

36 ‘—— Com
37 © com

44 end

ponent Declaration

ponent RESET_GEN

port (
clk_in :in std_logic;
reset_n_1 : in std_logic;
reset_n_2 : in std_logic;
reset_out_n : out std_Togic

y
component;

58 LED

64 SEN_CS

nios_sys connections —————-—-—————————————————————————————————

57 CONNECTED_TO_clk_clk = CLK12M;

<= CONNECTED_TO_pio_leds_export;

59 CONNECTED_TO_pio_lis3dh_export <= (SEN_INT1 & SEN_INT2);

60 CONNECTED_TO_reset_reset_n = reset;

61 CONNECTED_TO_spi_lis3dh_MISO <= SEN_S5DO;

62 SEN_SDI = CONNECTED_TO_spi_1lis3dh_MOSI;
63 SEN_SPC <= CONNECTED_TO_spi_1lis3dh_SCLK;

= CONNECTED_TO_spi_lis3dh_SS_n;

MAX1000

component RESET_GEN

port map (

clk_in => CLK12M,

reset_n_1 => RESET_n,

reset_n_2 => CONNECTED_TO_p11_Tlocked_conduit_export,
reset_out_n => reset

Page |37 www.arrow.com

Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.19 Compile the Quartus Prime Project

With the hardware design complete, a few device settings need to be changed before the project
can be compiled to create a configuration file. Those settings should have been already set in the
project files, but would be beneficial to double-check and learn their importance.

6.2.19.1 Open the device settings window from Assignments - Device... and click “Device and
Pin Options”.

6.2.19.2 In the General Category make sure the settings match the following picture.

W Device and Pin Options - nios_lab_top X
Category:
General gercpal. |

Configuration

Programming Files
Unused Pins Options:
Dual-Purpose Pins
Capacitive Loading
Board Trace Model

Specify general device options. These options are not dependent on the configuration scheme.

Auto-restart configuration after error

[Release clears before tri-states
Enable device-wide reset (DEV_CLRn)

1/0 Timing

Voltage D Enable device-wide output enable (DEV_OE)

Pin Placement] Enable nCONFIG, nSTATUS, and CONF_DONE pins

Error Detection CRC ["1 Enahle ITAG nin charine v
CvP Settings Auto usercode

Partial Reconfiguration
2 JTAG user code (32-bit hexadecimal): FFFFFFFF

In-system programming clamp state: |Tri-state ¥
Delay entry 10 user mode:

Device initialization clock source:

Description:

Directs the device to restart the configuration process automatically if a data error is
encountered. If this option is turned off, you must externally direct the device to restart the
configuration process if an error occurs.

Reset

OK Cancel Help

- “Enable DEV_CLRNn”: option not trivial as that pin is tied to Vcc. If Vcc drops low, this will reset
the registers of the device.

- “Enable nCONFIG,nSTATUS,and CONF_DONE pins”: nCONFIG is tied to RESET_n. If option is
enabled, it will reset the configuration when the RESET_n button is pressed. Disable the
option to use RESET_n as an input only and external reset for the embedded system.

MAX1000 Page |38 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.19.3 Under the Configuration category, check that “Single Uncompressed Image with
Memory Initialization (256Kbits UFM) is set as the Configuration mode and ensure the
other settings match the following:

G Device and Pin Options - nios_lab_top X
Category:
General

Configuration
Programming Files

Specify the device configuration scheme and the configuration device.

Unused Pins Configuration scheme: |Internal Configuration =
Dual-Purpose Pins

. N Configuration mode: |Single Uncompressed Image with Memory Initialization (256Kbits UFM) ~
Capacitive Loading

Board Trace Model Configuration device
1/0 Timin
/ & Auto
Voltage Use configuration device:
Pin Placement Device Options ...
Error Detection CRC . . ;
i Configuration device I/O voltage:
CvP Settings
Partial Reconfiguration [] Force vccio to be compatible with configuration 1/ voltage
VID Operation mode
Configuration pin: Configuration Pin Options...

Generate compressed bitstreams
Active serial clock source:

nable input tri-state on active configuration pins in user mode

Description:

Specifies the configuration mode used with the configuration scheme for configuring the device.

Reset

OK Cancel Help

6.2.19.4 Start the compilation by selecting Processing = Start Compilation or double-click
Compile Design in the Tasks window.

File Edit View Project Assignments | Processing Tools Window Help

B r nios lab t Stop Processing Ctri+shift+C
Project Navigator P> start Compilation Ctri+L
Files Analyze Current File
Z| nios_sys/synthesis/nios_sys.qip Start L
F® nios_lab_top.vhd Update Memory Initialization File

M8 RESET_GEN.vhd Compilation Report crrl+R

A4
¥® nios_lab_top.sdc 4 Dynamic Synthesis Report
PowerPlay Power Analyzer Tool

B SSN Analyzer Tool

Receive Compilation Status Notifications

MAX1000 Page |39 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.19.5 After few minutes the compilation should complete without any errors.
Tasks Compilation v =|qf =
Task Time
v P Compile Design 00:01:29
P Analysis & Synthesis 00:00:50
P> Fitter (Place & Route) 00:00:21

P> Assembler (Generate programming files) 00:00:04
P> TimeQuest Timing Analysis 00:00:07
P> EDA Netlist Writer

W Edit settings

» Program Device (Open Programmer)

6.2.20 Download Configuration File to MAX1000

Now that hardware design is complete and has been converted into a configuration file, the
MAX100 board needs to be programmed.

6.2.20.1 Open the Quartus Prime Programmer from Tools = Programmer or double-click on
Program Device (Open Programmer) from the Tasks window. Since the MAX1000
board isn’t connected yet, the Programmer should show a blank configuration.

& Programmer - C:/FPGA_Projects/MAX1000/MAX1000_nios_lab/max1000_nios_lab - nios_lab_top - [nios_lab_top.cdf]

File Edit View Processing Tools Window Help

arch altera.com
& Hardware Sewp... [No Hardware Mode: JTAG 3 Progress: :]

[Enable real-time ISP to allow background programming when available

File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase ISP

b Start
Configure Check Bit CLAMF

 Stop output files/nios _lab_topsof 10MOBSAU169 001C7677 001C7677

&) Auto Detec
Delete

& Add File..| | | ¢ >

* Change File

BsaveFile | || = sessssses

* Add Device

Note: With the newer releases of Quartus, the programming file .sof might already been added in
the Programmer by default.

MAX1000 Page |40 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.20.2 Connect your MAX1000 board to your PC using a USB cable. Since the Arrow USB
Blaster should be already installed, the Window’s Device Manager should display the
following entries (port number may differ depending on your PC):

v @ Ports (COM &LPT)
& ECP Printer Port (LPT1)

Technolegy - SOL (COM3)
ﬁ USB Serial Port (COM11)

= Print queues

n Processors

[Proximity devices

l‘ Security devices

o Smart card readers

l Software devices

i Sound, video and game controllers

S Storage controllers

Em System devices

v ' Universal Serial Bus controllers
§ Intel(R) MA-USB Host PAL

Intel(R) MA-USB Virtual Root Hub
Intel(R) USB 3.0 eXtensible Host Controller - 1.0 (Microsoft)

¢

¢

@ USB Composite Device
§ USE Composite Device
i USB Composite Device
§ USB Root Hub (xHCI)
i USB Serial Converter A
§ USE Serial Converter B

If not, please refer to MAX1000 User Guide for information on how to install the drivers properly.
You should see the green LED power on, indicating 3.3V applied voltage.

6.2.20.3 In the Programmer window, click “Hardware Setup..” and double-click the “Arrow-USB-
BLASTER” entry in the Hardware panel. The “Currently selected hardware” drop-down
box should display Arrow-USB-Blaster [USBO]. Depending on your PC, the port number
may differ.

» Hardware Setup X

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

Currently selected hardware: |Arrow-USB-Blaster [USBO] ke

Available hardware items

Hardware server Port | Add Hardware... |
| Arrow-USB-Blaster JlVell USBO
Remove Hardware
Close
6.2.20.4 Click Close.
MAX1000 Page |41 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.20.5 If the configuration file has been added by default, you can skip this step.

To add the configuration file, click “Add File..” and navigate through
<project_directory>/output_files/ in you compilation directory. Open “nios_lab_top.sof” file.

»1-:; ammer - C./FPGA_Projects/MAX1000/MAX1000_nios_lab/max1000_nios_lab - nios_lab_top - [nios_lab_top.cdf] = O bas
esrcnseracon_|@
£, Hardware Setup... ‘Armw—USB—Blaster [UsBO] Mode: |JTAG X Progress: l }
1 Enable real-time ISP to allow background programming when available
» Select Programming File x
wb Start
% Stop Look in: C\FPGA_Projects\MAX1000\MAX1000_nios_lab\output_files 10 Q0 0O [E] @
1 piestab—s £
8 Auto Detec = My Comp... H e |
2 dkolosov S
Delete
" Add File..
'* Change File
4 save File
® Add Device
b Up : : .
File name: |nios_lab_top.sof Open
" Down 5 5 i iles (* sof * P e i -
Files of type: |Programming Files (*.sof * pof *.jam *jbc *.ekp *jic) Cancel

6.2.20.6 Make sure the Programmer shows the correct file and the correct part in the JTAG
chain as shown below:

» Programmer - C;/FPGA_Projects/MAX1000/MAX1000_nios_lab/max1000_nios_lab - nios_lab_top - [nios_lab_top.cdf] =] X

File Edit View Processing Tools Window Help 0

& Hardware Setup.. |Arrow-USB-Blaster [USBO] Mode: JTAG = Progress: :

[Enable real-time ISP to allow background programming when available

W Srart File Device Checksum Usercode Program/ Verify Blank- Examine Security Erase
Configure Check Bit
s stop output_files/nios_lab_top.sof 10M08SAU169 001C7677 001C7677
M) Auto Detec
Delete

T add File.. || ¢

>
' Change File

A Save File JETTTrEeS !

* Add Device i. »

W up L ;

— L ToMoRsAUTeS
MAX1000 Page |42 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.2.20.7 Make sure the Program/Configure checkbox is checked and click Start to program the
MAX1000. You should see the CONF_D (red LED) toggle briefly to indicate that the
configuration is complete and the Progress bar should reach 100% (Successful).

Progress: 100%: (Successful)

MAX1000 Page |43 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.3 Build the Software Design

Overview:

6.3.1 Start the Nios Il Software Build Tools for Eclipse

In this section, you will use the Nios Il Software Build Tools (SBT) for Eclipse to
quickly create a board support package (BSP) and a C software application to run
on the Nios Il processor you implemented in the previous step. The software has

already been provided for you in the lab files.

6.3.1.1 From the main Quartus Prime window, start SBT from Tools = Nios Il Software Build
Tools for Eclipse.

Tools Window Help

©® O0yg>

Run Simulation Tool >
Launch Simulation Library Compiler

Launch Design Space Explorer Il
TimeQuest Timing Analyzer
Advisors K

Chip Planner
Design Partition Planner

Netlist Viewers 4

SignalTap Il Logic Analyzer

== |n-System Memory Content Editor

ol

“w N €€

MAX1000

Logic Analyzer Interface Editor

In-System Sources and Probes Editor
SignalProbe Pins...

Programmer

JTAG Chain Debugger

Fault Injection Debugger

System Debugging Tools »

IP Catalog
Nios Il Software Build Tools for Eclipse
Qsys

Tdl Scripts...

Customize...
Options...
License Setup...

Install Devices...

Page |44

Nios Il Soft Core Lab

ARGV

WWWw.arrow.com
August 2017

NARNOW

6.3.1.2 The Eclipse Workspace Launcher will open. Click “Browse...” and create a folder titled
eclipse_workstation in your lab directory to use in the software directory for the project.
Click “OK”.

= Workspace Launcher X

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | C\FPGA_Projects\MAX1000\MAX1000_nios_lab\eclipse_work v| | Browse...

[]Use this as the default and do not ask again

0K Cancel

6.3.2 Create a New Software Project

Now that Eclipse has a workstation, a new software application project and BSP can be created
for your hardware system.

6.3.2.1 Once Eclipse opens the workbench in the Nios Il prospective, select File > New = New
Il Application and BSP from Template as shown below. This is an easy way to create a BSP
and application together in a few easy steps.

& Nios Il - Eclipse
File Edit Navigate Search Project Niosll Run Window Help

MNew Alts+Shift+N > [Nios Il Application and BSP from Template
Open File... [Nios Il Application
[& Nios Il Board Support Package
Close Cul+W (o :
= . o [Nios Il Library
i DEMREY | Project
Save Crl+S 114 Other.. Ctri+N
Save As.. I
Save A Ctrl+Shift+5

A

The BSP uses the Qsys- generated .sopcinfo file to import the necessary settings from the
hardware project to the software project so that your application can run on the Nios Il processor.
It allows Eclipse to build the system library drivers and generate system-specific macros for the
custom Qsys system with the Nios Il processor.

MAX1000 Page |45 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.3.2.2 Click “...” to select the nios_sys.sopcinfo from your project directory and name the project
nios_lab. Make sure you select Blank Project from the Templates section as the software

sources will be added in a later step. Make sure the settings match the screenshot below
and select “Finish”.

Note: Your file path may differ from the one shown below.

= Nios Il Application and BSP from Template O X
Nios Il Software Examples
Create a new application and board support package based on a software example
template
Target hardware information
SOPC Information File name: | MAX1000\MAX1000_nios_lab\nios_sys.sopcinfo
CPU name: |nios vi
Application project
Project name: | nios_lab
Use default location
Project location: | CAFPGA_Projects\MAX 10000\ MAX1000_nios_lab\software'
Project template
Templates Template description
Blank Project # | | Blank Project creates an empty project to ~
Board Diagnostics which you can add your code.
Count Binary
Float2 Functionality For details, click Finish to create the project
Float2 GCC and refer to the readme.txt file in the project
IF!O:’:I:tZrPerf?rmjnce | | directory.
< > W
@j < Back Next = Cancel

6.3.2.3 Eclipse will create two directories in the workspace; one for the application project and

one for the BSP. The application directory (nios_lab) is currently empty while the BSP
directory (nios_lab_bsp) contains software drivers, a system.h header file, initialization
source code and other software infrastructure.

[t5 Project Explorer 2 H&|se ¥ = O
=5 nios_lab
== nios_lab_bsp [nios_sys]

MAX1000
Nios Il Soft Core Lab

ARGV

Page | 46 www.arrow.com

August 2017

NARNOW

6.3.3 Add Source Code to the Project

The C source file have been provided for you in this lab. All that needs to be done is to copy it to
your workspace.

6.3.3.1 From Windows Explorer, navigate to your main project directory. There you will find a file

named main.c which you will need to copy to this project.

6.3.3.2 Select the main.c file and drag it into the nios_lab directory in Eclipse. Select the “Copy
files” option in the pop-up and click “OK”.

= File Operation e

Select how files should be imported into the project:
@ Copy files
(O Link to files
Create link locations relative to: |PROJECT_LOC

Configure Drag and Drop Settings...

© Cancel

Note: Since we are copying the files instead of linking to them, any changes that you would want
to make to the source files need to be made to the versions inside the nios_lab directory.
Otherwise, the changes will not be compiled.

You should now see the new file appear under the nios_lab project in the Project Explorer.

6.3.3.3 In some cases, the familiar windows “do not enter” symbol appears indicating you cannot
add files using the previous method. In this case, you can copy files using Windows
Explorer. Copy the source file from the project directory into the nios_lab folder. In
Eclipse, you need to right-click your nios_lab project and click Refresh.

6.3.3.4 Using this method, the C-source files added to the project may not be automatically added
to the Makefile. You will notice a white dot or green dot besides the source file. For the
C-files, you need to make this dot green by right-clicking each .c file and selecting: Add to
Nios Il Build.

6.3.4 Configure the Board Support Package

The Board Support Package specifies the properties of the software system and needs to be
configured for the software to execute correctly. Those properties include setting the stdin,
stdout and stderr interfaces, memory allocation for the heap and stack, drivers, and wether an
operating system will be used.

6.3.4.1 Right-click on the nios_lab_bsp project and select Nios Il = BSP Editor... from the pop-up

window.
MAX1000 Page | 47 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.3.4.2 The Nios Il BSP Editor will open. In the Common settings under the Main tab, ensure the
settings are configured as below.

hal

sys_clk_timer: nane
timestamp_timer: none
stdin: jtag_uart ~
stdout: jtag_uart ~
stderr: jtag_uart ~

D enable_small_c_library

[] enable_gprof

|:| enable_reduced_device_drivers
D enable_sim_optimize

hal.linker

|:| enable_exception_stack
exception_stack_size: 1024

exception_stack_memory_region_name: onchip_ram

D enable_interrupt_stack
interrupt_stack_size: 1024

interrupt_stack_memory_region_name: onchip_ram

Notice that since there is no operating system in this lab, the stdout, stdin, and stderr messages
are reported through the JTAG UART which you will be able to see in the Nios Il Console in Eclipse.

On-chip memory will be used processor code storage, data storage, the exception, and interrupt
stack.

Feel free to explore the BSP editor. The Drivers tab gives the user control over what drivers are
built into the BSP. The Linker Script tab provides a mechanism to adjust what memory regions are
utilized for certain purposes. We only have one memory in this system but for systems with
multiple memory locations (i.e. DDR3, flash, and on-chip ram), this is particularly useful.

6.3.4.3 Click “Generate” button to update the BSP and select “Exit” to close it once the process is
complete.

6.3.4.4 There are a few more BSP settings to edit. Right-click on the nios_lab_bsp project and
select Properties from the pop-up menu.

6.3.4.5 In the Properties window, select the Nios Il BSP Properties tab. It may take a moment to
load the settings.

6.3.4.6 To keep the software footprint small so it fits our device, enable “Reduced device drivers”
and “Small C library” options. As there is no C++ code, disable the “Support C++” option.

MAX1000 Page |48 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

The BSP Properties should match the following:

= Properties for nios_lab_bsp O x
type filter text Nios Il BSP Properties ¥ T
Resource
Builders Sopcinfo: | .\.\nios_sys.sopcinfo |
C/C++ Build Flags
C/C++ General Defined symbols: | none |
Nios Il BSP P rti
IO_S IDRETES Undefined symbols: | none |
Project References
Run/Debug Settings Assembler flags: | -Wa,-gdwarf2 |
Task Repository Warning flags: | -Wall |
WikiText
User flags: |none |
Debug level: On ~
Optimization level: | Off ~
Reduced device drivers
[] Support C++
] GPROF support
Small C library
[1ModelSim only, no hardware support
BSP Editor...
7 s Apply

6.3.4.7 Select “Apply” and then click “OK” to exit the Properties Window.

6.3.5 Build the Software

With all of the appropriate settings configured, you can now build the BSP and software project
using the next two steps to produce an executable and linked format (.elf) file to run on the

MAX1000 board.

6.3.5.1 Right-click on the nios_lab_bsp project and select Build Project from the pop-up menu to

build the BSP.

MAX1000
Nios Il Soft Core Lab

ARGV

[Project Explorer &2 B&|e =0
& nios_lab
=2 nios_lab bsp [nios svs]
New
Go Into

Open in New Window

Copy

Paste

¥ Delete

Remove from Context
Source

Move...

Rename.

Import...

Export...

L[

Build Project
Clean Project
| Refresh

o3

Page |49

&l mainc &
5 /%

* main.c

Ctrl+C
Cirl+V
Delete
Ctrl+Alt+5hift+Down

>

WWWw.arrow.com
August 2017

NARNOW

You can have the build process run in the background by from the pop-up window if you wish.
You can observe the process commands in the Console window.

= Build Project [m] X

'a Building project...

[_] Always run in background

Run in Background Cancel Details >>

6.3.5.2 Repeat the procedure for the application. Right-click the nios_lab project and select Build
Project from the pop-up menu.

[Problems ¥ Tasks | & Gonsole 2 | Nios Il Console = Properties

CDT Build Console [nios_lab]

Info: - 22 KBytes free for stack + heap.

Info: Creating nios lab.objdump

nios2-elf-objdump --disassemble --syms --all-header --source nios_lab.elf >nios_lab.objdump
[nios_lab build complete]

11:03:01 Build Finished (took 3s.467ms)

<

6.3.6 Run the Application on the MAX1000 Board

Overview: Now that you have an executable, you can download the application to the on-
chip memory in the MAX10 and the Nios Il processor will execute.

6.3.7 Download the Executable to the MAX1000

First, a target configuration will need to be established with the MAX1000 board so that Eclipse
can download the code and communicate with the board.

6.3.7.1 Right-click on the nios_lab software project and select Run As = Nios Il Hardware.

This will rebuild the software project to create an up-to-date executable and download the code
into the memory of the MAX10. The debugger then resets the Nios Il and it begins executing the
code.

MAX1000 Page |50 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

Note: If a Run Configuration dialogue appears, you may need to click the Target Connection tab
and scroll to the right. Click "Refresh Connections" and the appropriate connection to the MAX100
should appear as below. Then click "Run”.

= Run Configurations x
Create. manage. and run configurations @
The expected Stdout device name does not match the selected target byte stream device name.
% = |
L= ol | B 50~ || Name: | nios_lab Nios |l Hardware configuration ‘
‘ B Project-i. Target Connect'bﬁ : ?;'S Debuggef- =] Common". Try Source.'
[E] C/C++ Application Connections
[&] C/C++ Remote Application EE

Resolve Names

~ 1 Nios Il Hardware
P nios_lab Nios Il Hardware

- Byte St Devices:
P Nios Il Hardware v2 (beta) Lot
Nios Il ModelSim Cable Device Device ID Instance ID Name Version ‘

" i Refresh Connections
Launch Group Cable Device Device ID Instance 1D Name Architecture ‘

System ID Properties...

@ Nios Il ModelSim v2 (beta)

D Disable ‘Nios I Console' view

Quartus Project File name: < Using default .sopcnfo & .jdi files extracted from ELF =

System |D checks
D Ignore mismatched system ID
D Ignore mismatched system timestamp

Download

Download ELF to selected target system
Start processor

D Reset the selected target system

< >

Filter matched 8 of & items Apply Revert

@ Run Close

In the “System ID Properties” you can verify if the target device has the matching Device ID that
we previously set Qsys for System Device ID.

6.3.7.2 After a few seconds, the Nios Il Console should open at the bottom of the Eclipse:

oblems ¥ Tasks El Console '¥¥Nios Il Console 52 Properties
nios_lab Mios I Hardware configuration - cable: Arrow-USB-Blaster on localhost [USEQ] device ID: 1instance ID: O name: jtaguart_0
Nios Lab with MAX1000!

After this message, the software downloaded to MAX1000 will obtain the y-axis data from its on-
board accelerometer and toggle it’s LEDs accordingly to the tilt level. Every 10ms the y-axis value
will be sent to Nios Il Console window.

MAX1000 Page |51 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

6.3.7.3 Next Steps

Having successfully downloaded a configuration hardware image containing a Nios Il processor to
the FPGA and a software executable, you can now experiment with your own application ideas.
The design flow would be the same but you are able to add more components/peripherals to the
embedded system in Qsys and expand the system’s capabilities.

There are various methods to try other applications. Here are some optional steps:

1) Edit existing C-source file.
2) Create new Qsys with additional components along with a new software project following
the steps used in this lab.

6.3.7.4 Non-volatile Configuration

In this lab, a volatile configuration(.sof) was created for the MAX10, meaning that on power off
all configurations are erased. If you wish to create a non-volatile configuration file that includes
the hardware and software files in one file for the MAX10 please refer to AN730 for details.

Link: https://www.altera.com/en US/pdfs/literature/an/an730.pdf

CONGRATULATIONS! YOU HAVE SUCCESSFULLY COMPLETED THE NIOS LAB!

MAX1000 Page |52 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

7. Revisions

Version \ Change Log Date of Change

V1.0 Initial Version 17/08/2017
MAX1000 Page |53 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

8. Legal Disclaimer

ARROW ELECTRONICS

EVALUATION BOARD LICENSE AGREEMENT

By using this evaluation board or kit (together with all related software, firmware, components, and
documentation provided by Arrow, “Evaluation Board”), You (“You”) are agreeing to be bound by the terms and
conditions of this Evaluation Board License Agreement (“Agreement”). Do not use the Evaluation Board until
You have read and agreed to this Agreement. Your use of the Evaluation Board constitutes Your acceptance of
this Agreement.

PURPOSE

The purpose of this evaluation board is solely intended for evaluation purposes. Any use of the Board beyond
these purposes is on your own risk. Furthermore, according the applicable law, the offering Arrow entity
explicitly does not warrant, guarantee or provide any remedies to you with regard to the board.

LICENSE

Arrow grants You a non-exclusive, limited right to use the enclosed Evaluation Board offering limited features
only for Your evaluation and testing purposes in a research and development setting. Usage in a live environment
is prohibited. The Evaluation Board shall not be, in any case, directly or indirectly assembled as a part in any
production of Yours as it is solely developed to serve evaluation purposes and has no direct function and is not
a finished product.

EVALUATION BOARD STATUS

The Evaluation Board offers limited features allowing You only to evaluate and test purposes. The Evaluation
Board is not intended for consumer or household use. You are not authorized to use the Evaluation Board in any
production system, and it may not be offered for sale or lease, or sold, leased or otherwise distributed for
commercial purposes.

OWNERSHIP AND COPYRIGHT

Title to the Evaluation Board remains with Arrow and/or its licensors. This Agreement does not involve any
transfer of intellectual property rights (“IPR) for evaluation board. You may not remove any copyright or other
proprietary rights notices without prior written authorization from Arrow or it licensors.

RESTRICTIONS AND WARNINGS

Before You handle or use the Evaluation Board, You shall comply with all such warnings and other instructions
and employ reasonable safety precautions in using the Evaluation Board. Failure to do so may result in death,
personal injury, or property damage.

You shall not use the Evaluation Board in any safety critical or functional safety testing, including but not limited
to testing of life supporting, military or nuclear applications. Arrow expressly disclaims any responsibility for
such usage which shall be made at Your sole risk.

WARRANTY

Arrow warrants that it has the right to provide the evaluation board to you. This warranty is provided by Arrow
in lieu of all other warranties, written or oral, statutory, express or implied, including any warranty as to
merchantability, non-infringement, fitness for any particular purpose, or uninterrupted or error-free operation,
all of which are expressly disclaimed. The evaluation board is provided “as is” without any other rights or
warranties, directly or indirectly.

You warrant to Arrow that the evaluation board is used only by electronics experts who understand the dangers
of handling and using such items, you assume all responsibility and liability for any improper or unsafe handling
or use of the evaluation board by you, your employees, affiliates, contractors, and designees.

MAX1000 Page |54 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

NARNOW

LIMITATION OF LIABILITIES

In no event shall Arrow be liable to you, whether in contract, tort (including negligence), strict liability, or any
other legal theory, for any direct, indirect, special, consequential, incidental, punitive, or exemplary damages
with respect to any matters relating to this agreement. In no event shall arrow’s liability arising out of this
agreement in the aggregate exceed the amount paid by you under this agreement for the purchase of the
evaluation board.

IDENTIFICATION

You shall, at Your expense, defend Arrow and its Affiliates and Licensors against a claim or action brought by a
third party for infringement or misappropriation of any patent, copyright, trade secret or other intellectual
property right of a third party to the extent resulting from (1) Your combination of the Evaluation Board with
any other component, system, software, or firmware, (2) Your modification of the Evaluation Board, or (3) Your
use of the Evaluation Board in a manner not permitted under this Agreement. You shall indemnify Arrow and its
Affiliates and Licensors against and pay any resulting costs and damages finally awarded against Arrow and its
Affiliates and Licensors or agreed to in any settlement, provided that You have sole control of the defense and
settlement of the claim or action, and Arrow cooperates in the defense and furnishes all related evidence under
its control at Your expense. Arrow will be entitled to participate in the defense of such claim or action and to
employ counsel at its own expense.

RECYCLING

The Evaluation Board is not to be disposed as an urban waste. At the end of its life cycle, differentiated waste
collection must be followed, as stated in the directive 2002/96/EC. In all the countries belonging to the European
Union (EU Dir. 2002/96/EC) and those following differentiated recycling, the Evaluation Board is subject to
differentiated recycling at the end of its life cycle, therefore: It is forbidden to dispose the Evaluation Board as
an undifferentiated waste or with other domestic wastes. Consult the local authorities for more information on
the proper disposal channels. An incorrect Evaluation Board disposal may cause damage to the environment and
is punishable by the law.

MAX1000 Page |55 www.arrow.com
Nios Il Soft Core Lab August 2017

ARGV

